

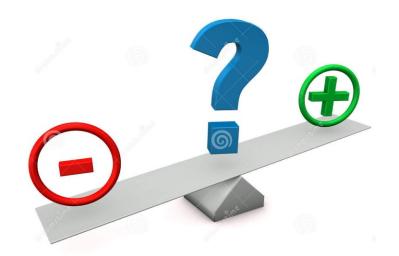
Province-wide assessment of grassland carbon storage:

challenges, opportunities and potential applications

Majid Iravani

Alberta Biodiversity Monitoring Institute, University of Alberta

iravani@ualberta.ca


Grassland carbon storage assessment

Several studies have assessed grassland carbon storage under different management regimes and climate conditions

Potential impacts of management practices and future climatic changes

Adaptive land management practices

Lack of a province-wide dynamics tool for consistent assessment of grassland carbon storage

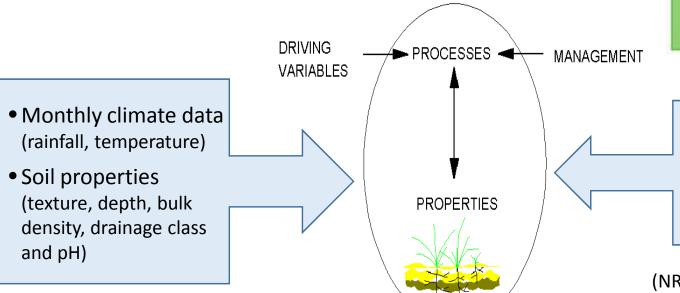
Ecosystem Services Assessment project

Part of a province-wide initiative: Ecosystem Services Research and Innovation Roadmap

Ecosystem Services

- Soil carbon storage
- Forage production
- Water purification
- Pollination
- Biodiversity
- Timber production

- Develop an integrated set of spatially-explicit ecosystem service models
- Support a better accounting of the provision and value of multiple services
- Assess potential future changes in ecosystem service provision


Grassland Carbon Assessment project

Assess the current and future status of organic carbon storage across Alberta's native grasslands

Establish a regional grassland carbon dynamics model

The ecosystem carbon model **CENTURY** (process-based)

Consumption

Respiration

Photosynthesis

Plant biomass

Mineralization

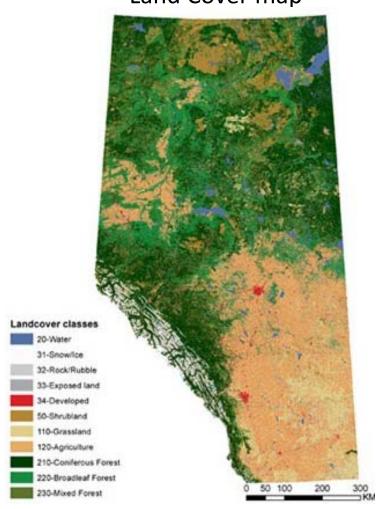
Crop and animal residues

Soil organic matter

Carbon in soil organic matter

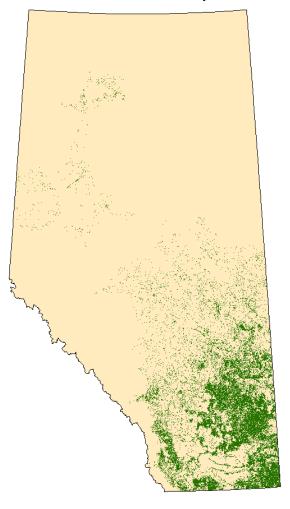
Humus and aggregate formulation in microbes

- Fire regime
- Land management history (grazing regime)


(NREL 2009; Parton et al. 1988)

Native grassland

Where are the native grasslands located?


ABMI's Wall to Wall Land Cover map

ABMI's Human Footprint map

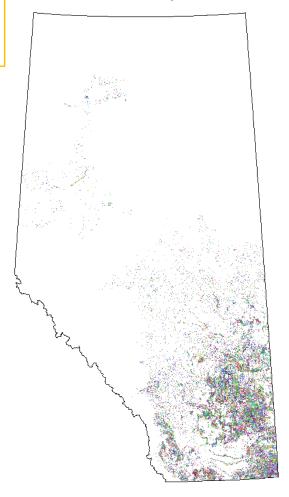
Alberta's Native Grassland map

Native grassland soil database

What is the appropriate spatial unit?

Agricultural Region soil map

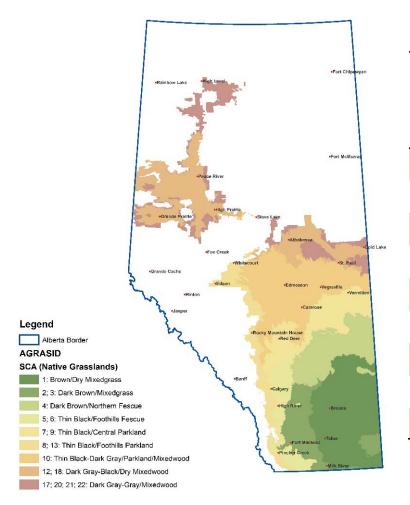
The Agricultural Region of Alberta Soil Inventory Database AGRASID 3.0


Native grassland soil database

25,093 soil polygons (1491 soil types)

CENTURY model run for each polygon (representing soil, climatic, vegetation and land management)

Native grassland soil map

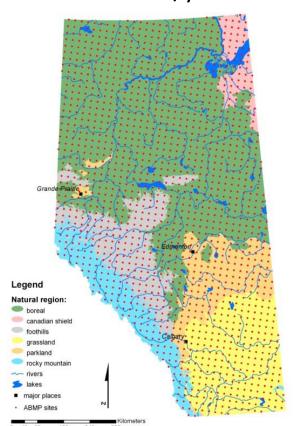


Grassland Soil Correlation Areas (SCAs)

What are the significant regions?

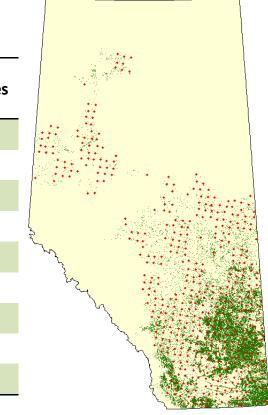
SCAs: generally agree with natural **ecoregion** boundaries, correlate strongly with **soil zone** lines, with further subdivisions reflecting recognized **agroclimatic zones**

Combined SCA name	Original SCA code(s)	Agroclimatic zone	AGRASID	
			Soil types	Soil polygons
Brown Soil of Dry Mixedgrass	1	3A	75	4688
Dark Brown Soil of Mixedgrass	2,3	2AH, 2H	77	2012
Dark Brown Soil of Northern Fescue	4	2AH	39	2736
Thin Black soil of Foothills Fescue	5,6	2AH, 3H	49	1521
Thin Black soil of Central Parkland	7,9	2H, 3H	39	1753
Thin Black Soil of Foothills Parkland	8,13	4H	66	1929
Thin Black-Dark Gray Soil of Parkland	10	2H, 3H	84	3268
Dark Gray-Black Soil of Dry Mixedwood	12,18	2H, 3H	106	2151
Dark Gray-Gray Soil of Mixedwood	17,20,21, 22	4H (5H)	123	1495


ABMI soil organic carbon monitoring program 🥪

What are the available soil carbon data?

Geo-referenced organic carbon measurement in the top (0-5 cm) mineral soil layer

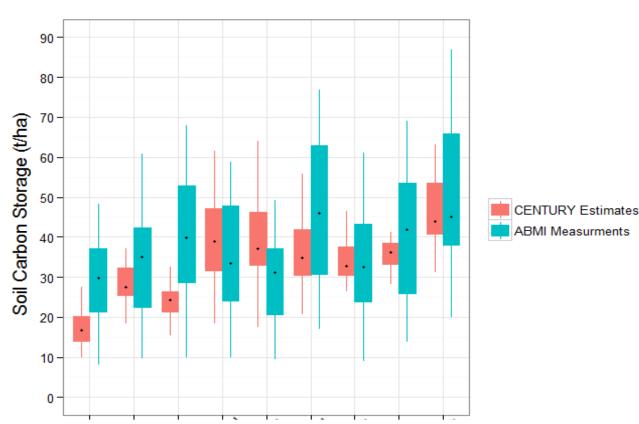

1656 sites (20 km apart), 350 sites/year

ABMI carbon data for grassland regions

Combined SCA name	ABMI sites
Brown Soil of Dry Mixedgrass	110
Dark Brown Soil of Mixedgrass	38
Dark Brown Soil of Northern Fescue	53
Thin Black soil of Foothills Fescue	29
Thin Black soil of Central Parkland	24
Thin Black Soil of Foothills Parkland	30
Thin Black-Dark Gray Soil of Parkland	35
Dark Gray-Black Soil of Dry Mixedwood	47
Dark Gray-Gray Soil of Mixedwood	37

Around **400** grassland monitoring sites

Establish a regional grassland carbon dynamics model

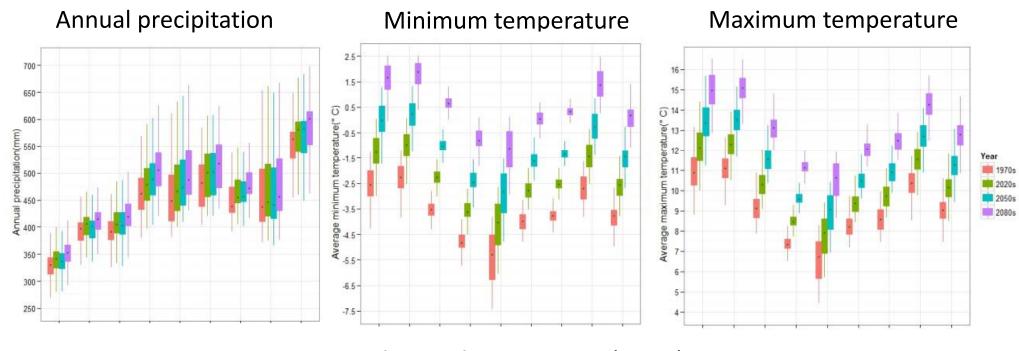

What are the challenges?

- limitations of currently available data and scientific knowledge
- Model parameterization, calibration and validation

Other available data:

- AESRD long-term biomass data
- Remotely sensed data (MODIS NDVI vegetation product)
- Rangeland Research Institute biomass and carbon data

It's Our Nature to Know



Provides baseline estimates of current grassland carbon storage and associated uncertainty

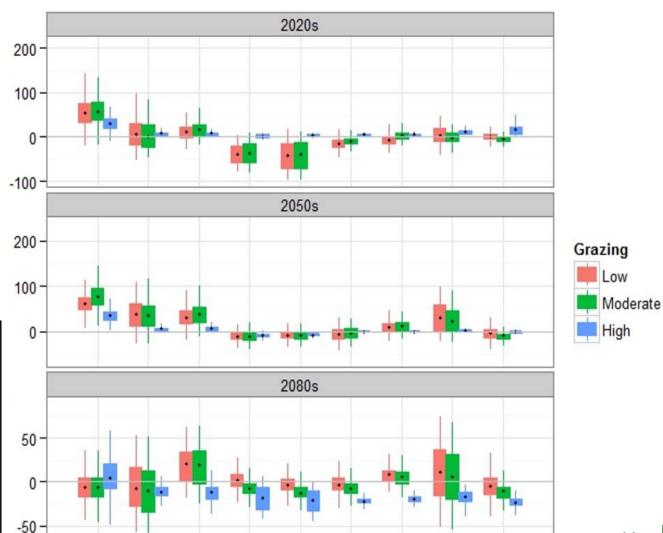
Climate projections for native grassland

Ensemble of 23 CMIP3 global climate models (A2 emission scenario) available through ClimateWNA (Wang et al. 2012)

Soil Correlation Areas (SCAs)

Projected changes in precipitation is smaller than the changes in temperatures

Predicting changes in grassland carbon storage



What are the applications?

- Impacts of future land management practices and climate change scenarios
- Impacts of alternative climate change adaptation strategies
- Cost-benefit of potential adaptation strategies

A baseline to assess whether management practices and adaptation strategies will lead to resilience of socioecological systems in Alberta's rangeland

Relative change in aboveground biomass carbon (%)

Conclusion and future directions

Alberta needs a regional grassland carbon model

Science

- Knowledge review on grassland carbon storage and grassland carbon assessment
- A provincial database on grassland carbon storage and grassland managment history

Policy and management

 Guideline for land mangement practicies and climate change adaptation strategies

Thank you

Supported by

Collaborators

http://ecosystemservices.abmi.ca/